if cos( θ- α) = a , sin( θ – β) = b, then a² – 2ab sin (α-β) + b² is equal to

if cos( θ- α) = a , sin( θ – β) = b, then a² – 2ab sin (α-β) + b² is equal to

( 2+ √3) sin θ + 2 cos θ lies between

( 2+ √3) sin θ + 2 cos θ lies between

if 0 < θ < π, o< φ < π and cos θ . cos Φ. cos( θ + Φ) = -1/8, then

if 0 < θ < π, o< φ < π and cos θ . cos Φ. cos( θ + Φ) = -1/8, then

sin^2n x + cos^2n x lie between

sin^2n x + cos^2n x lie between

if A > 0, B > 0 and A+B = π/3, then the maximum value of tan A tan B is

if A > 0, B > 0 and A+B = π/3, then the maximum value of tan A tan B is

if (2 sin α / 1+ cosα + sin α ) = x then (1- cosα + sin α )/(1+ sin α) =

if (2 sin α / 1+ cosα + sin α ) = x then (1- cosα + sin α )/(1+ sin α) =

Angle between the hour-hand and the minute-hand in circular measure at half part 4 is

Angle between the hour-hand and the minute-hand in circular measure at half part 4 is

sin²A = cos²(A-B) + cos²B – 2 cos(A-B) cos A . cos B

sin²A = cos²(A-B) + cos²B – 2 cos(A-B) cos A . cos B $\sin ^{2}A = \cos ^{2}(A-B)+\cos ^{2}B-2\cos \left ( A-B \right )\cos A\: \cos B$