If cos x = tan y, cos y = tan z, cot z =tan x, then the value of  sin x is

If cos x = tan y, cos y = tan z, cot z =tan x, then the value of  sin x is

If x sin α = y cos α, then x/sec²α+y/csc²α  is equal to

$\texttt{If} x\sin \alpha =y\cos \alpha , \texttt{then} \frac{x}{\sec ^{2}\alpha }+\frac{y}{\csc ^{2}\alpha }$

If tan A tan B = √a-b/a+b ,then (a-b cos 2A)(a-b cos 2B) is equal to

$\texttt{If} \tan A \tan B =\sqrt{\frac{a-b}{a+b}},\texttt{then}\left ( a-b\cos 2A \right )\left ( a-b\cos 2B \right )\texttt{is equal to}$

if  x = sin^6 θ + cos^6 θ, then x belongs to the interval for all real θ

$\texttt{If}\: \: x=\sin ^{6}\theta +\cos ^{6}\theta ,\: \texttt{then}\: \: x\: \: \texttt{belongs to the interval for all real }\theta$

If cos (α+β) sin(γ+δ)= cos(α-β) sin(γ-δ), then

$\texttt{If}\: \: \cos \left ( \alpha +\beta \right )\sin \left ( \gamma +\delta \right )=\cos \left ( \alpha -\beta \right )\sin \left ( \gamma -\delta \right ),\texttt{then}$

If cot A=(√ac), cot B = √(c/a),cot C =√(a³/c), and C = a²+a+1, then

$\texttt{If}\: \: \cot A=\sqrt{ac},\cot B=\sqrt{\frac{c}{a}},\cot C=\sqrt{\frac{a^{3}}{c}},\: \: \texttt{and}\: \: C=a^{2}+a+1,\: \: \texttt{then}$

If α+β=90°,then maximum value of sin α sin β is

$\texttt{If}\: \: \alpha +\beta =90^{\circ},\texttt{then maximum value of }\: \: \sin \alpha \sin \beta \: \: \texttt{is}$

If cot β = (sin α -sin γ)/(cos γ-cosα), then α,β,γ are in

$\texttt{If}\: \: \cot \beta =\frac{\sin \alpha -\sin \gamma }{\cos \gamma -\cos \alpha },\: \: \texttt{then}\: \: \alpha ,\beta ,\gamma \: \: \texttt{are in}$

If 3 tan θ tan Φ =1, then

$\texttt{If}\: \: 3\tan \theta \tan \phi =1,\: \: \texttt{then}$

Page 1 of 2
1 2