## f (x) as a function of x equals

f (x) as a function of x equals ANS: C

## y satisfies the differential equation

y satisfies the differential equation ANS:  A

## The angle α ∈(0, π/2) between the two  asymptotes of the hyperbola lies in the interval

The angle α ∈(0, π/2) between the two  asymptotes of the hyperbola lies in the interval ANS:D

## Locus of P is a

Locus of P is a ANS : B

## Possible graph of y = f (x) is

Possible graph of y = f (x) is ANS: C

## On the possible graph of y = f (x) we have

On the possible graph of y = f (x) we have ANS:

## Suppose f : R → R+, and g : R → R+ are differentiable functions such that x · g(f(x))·f’(g(x))·g’(x) = f(g(x))·g’(f(x))·f’(x) ∀ x ∈ R

Suppose f : R → R+, and g : R → R+ are differentiable functions such that x · g(f(x))·f’(g(x))·g’(x) = f(g(x))·g’(f(x))·f’(x) ∀ x ∈ R

## Let f(x) = cos¯¹ (4×3 – 3x) If f′ ((3/5)) =  and f′ ((-4/5)) =q find |4p+q| is equal to

Let f(x) = cos¯¹ (4×3 – 3x) If f′ ((3/5)) =  and f′ ((-4/5)) =q find |4p+q| is equal to

## If x f(x) = 3 (f(x))² + 2 then  ∫ ((2x²-12xf(x)+f(x))/((6f(x)-x)(x²-f(x)))²)dx

If x f(x) = 3 (f(x))² + 2 then  ∫ ((2x²-12xf(x)+f(x))/((6f(x)-x)(x²-f(x)))²)dx

## Let f : R —{–1, 0, 1} →R satisfies f2 (x).f² (x) .f((1-x)/(1+x))=64x then [|f(-2)|] is where [*] denotes GIF

Let f : R —{–1, 0, 1} →R satisfies f2 (x).f² (x) .f((1-x)/(1+x))=64x then [|f(-2)|] is where [*] denotes GIF

## The value of | 1  sinθ   1 – sinθ       1  sinθ – 1 – sinθ 1|

Page 5 of 338
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 338